2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
【这些文化遗存现今的模样㉜】走近这张抗日名将创办的报纸……******
【这些文化遗存现今的模样㉜】
光明日报记者 常河 丁一鸣
“逐鹿中原飞骏马,鸡鸣拂晓响黄钟。文工歌舞壮军旅,皓月晨光照雪枫。”这首诗里写的,是抗战时期彭雪枫将军的治军三宝:骑兵团、《拂晓报》和拂晓剧团。
《拂晓报》报史馆一角资料照片
彭雪枫,是我军文武兼备的名将。他1907年9月生于河南省南阳市镇平县,早年即投身革命,曾参加了中央苏区历次反围剿作战和二万五千里长征,率军攻占娄山关,横渡金沙江,飞越大渡河……1944年9月,在河南夏邑县八里庄围歼顽军李光明支队的战斗中,他不幸中流弹牺牲,时年37岁。1945年2月7日,中共中央在延安为彭雪枫将军隆重举行追悼大会,毛泽东、朱德、彭德怀、陈毅的共同挽词是:“二十年艰难事业,即将彻底完成,忍看功绩辉煌,英名永在,一世忠贞,是共产党人好榜样;千万里山河破碎,正待从头收拾,孰料血花飞溅,为国牺牲,满腔悲愤,为中华民族悼英雄。”
彭雪枫,家学渊源,酷爱文墨,写得一手好文章。1938年秋,抗日烽火遍燃中原,中共中央决定由彭雪枫率新四军游击支队挺进豫东,创建抗日根据地。同年9月29日,游击支队誓师东征,就在那天,在河南省确山县竹沟镇一个农舍中,《拂晓报》诞生了。彭雪枫为《拂晓报》题写了报头,并亲自撰写了创刊词:“拂晓代表着朝气、希望、革命、勇进、迈进有为、胜利就要到来的意思。军人们要在拂晓出发,要进攻敌人了。志士们在拂晓要奋起,要闻鸡起舞。拂晓催我们斗争,拂晓引来了光明。”
《拂晓报》创办之初,由于敌人的疯狂扫荡、封锁,各种物资奇缺,两支铁笔、两块钢板、两筒油墨、一把油刷、一块木板和半筒“高乐牌”蜡纸,便是全部家当。油墨用完了,彭雪枫卖掉自己心爱的战马,为《拂晓报》买来新油墨。他认为:“一支笔胜过两千支毛瑟枪。”对新闻事业,彭雪枫充满了热爱,曾说:“将来革命胜利了,我去当一名新闻记者。”
战火烽烟早已消散,如今的《拂晓报》是中共安徽宿州市委机关报。初冬时节,记者来到宿州。
走进落成不久的《拂晓报》报史馆,大厅偌大的背景墙上,印着《拂晓报》创刊号的版面图。“《拂晓报》刚创刊时,由于条件简陋,印刷质量不好,常常油迹斑斑。但它的影响却与日俱增。你们看,这是1939年12月5日的第100期纪念专刊,上面还有毛泽东同志的题词‘坚持游击战争’。”《拂晓报》老职工宋建国的讲解,把我们带回到了那段峥嵘岁月。
在日寇铁蹄蹂躏下的中国,一群战士一手扛着枪、一手握着笔,随着部队征战的脚步,辗转黄淮平原。在淮水两岸,在涡河之滨,他们凭着坚定信念、一腔热血,把一期又一期带着油墨香味的《拂晓报》,送到广大军民手中。当时,一位重庆读者曾致信《拂晓报》编辑庄方:“《拂晓报》简直像天外来鸿,读了报道,感动得热泪滚滚。”
“战争年代,报社先后有15名烈士血洒疆场,年龄最小的只有17岁。”宋建国告诉我们,1944年9月,彭雪枫牺牲后,是时任《拂晓报》记者张景华和十几名战士把彭雪枫的遗体从夏邑县转移到泗洪县半城镇。至今,宋建国仍难忘当年采访张景华时老人的数度哽咽:“在彭师长的遗物里,我们发现了一份完整的《拂晓报》合订本,封面上是师长手写的‘心血的结晶’……”
走近《拂晓报》,记者了解到:80多年风雨历程,当年的那张油印小报,经过血与火的洗礼,和着时代节拍,一路开拓创新,一路勇毅前行,现在已变成集报、网、端、微、屏于一体的新媒体矩阵。
在拂晓报社编辑部,时政要闻部记者马竞正在整理新闻素材。“最近,全市群众学习党的二十大精神热情高涨,我们要把这些生动的场景以全媒体的形式推送给读者。”文字记录、出镜采访、视频制作,马竞全程参与,轻车熟路。
作为一名全媒体记者,马竞觉得,与80多年前《拂晓报》筚路蓝缕创业时相比,现在报纸的传播手段日新月异,但它的红色基因始终未变。
“一代又一代《拂晓报》人,凭着对党和人民的忠诚信念,辛勤耕耘、默默奉献,形成了自己的优良传统,这些是我们这代《拂晓报》人弥足珍贵的精神财富,时刻激励着我们接续前辈的事业,奋勇前进。”拂晓报社党组书记、社长武华峰说。
灵璧县尹集镇尹楼村是拂晓报社的联系点,我们赶到村委会时,天空飘起了小雪。村里的第一书记马峰刚走访了村里几个大病户和危房户,还没来得及掸去身上的薄雪,就和村干部“掰扯”起当地特色美味“豆丹”养殖的事来。
马峰也是《拂晓报》的记者。到村一年多时间,在报社支持下,他帮助村里修建了通到每家每户的水泥路和高标准农田,还建起了杂粮加工工厂和光伏项目。
“我父亲在《拂晓报》工作了一辈子。小时候,我经常去报社看叔叔阿姨们写稿、看印刷车间的师傅们铅字排版。大学毕业后考进报社,就是要像父亲他们那样传承这份红色的新闻事业,用‘拂晓精神’为时代放歌,用‘拂晓精神’去激发人民改天换地的热情。”马峰的眼里跳动着一团火。
扫码看视频 走进《拂晓报》的厚重历史
《光明日报》( 2023年01月12日 01版)
(文图:赵筱尘 巫邓炎)